

Sustainable Energy in Food Production

Developing the sterilization regimes of the canned food. Increasing energy efficiency

> Vasily Volchenko, professor, candidate of tech. sci. (PhD) Murmansk State Technical University

Sterilized Canned Foods

- Sterilized canned food a product hermetically sealed in the can (made of tin, aluminum or plastic) and sterilized.
- Canned foods are very popular in some countries, especially in Russia.

Canned Foods: Advantages

- Easy and long storage
- O Sterility (no microorganisms)
- Ready-to-use
- O Specific taste
- No preserving agents needed
- Possibility of making strategic reserves
- Fair profitability (very sensitive to cost of every procedure and to demand)

Canned Foods: disadvantages

Part of vitamins and amino acids are destroyed

- O Slightly rough texture
- O Special care during processing

High energy consumption

Thermal sterilization

- A process of destroying almost all of microorganisms at the temperature 100 °C or higher
- First inventor is Nicolas Appert (1804-1810), won the prize from Napoleon.
- O The process was explained by Louis Pasteur (together with pasteurization)

Ways of Producing the Sterilized Canned Foods

- classic way (sterilizing the products hermetically packaged in the can) suit for any product
- aseptic canning (the product and the cans are sterilized separately, and then the packaging process takes place in the aseptic zone) – suit for liquid products and some pastes.

Classification: Sterility Level

- Non-sterilized canned foods
- Pasteurized canned foods and semi-sterilized canned foods (vegetative forms of microorganisms are destroyed, spores still alive).
- Canned foods sterilized by ³/₄ (F=0,6-0,8)
- Fully sterilized canned foods with commercial sterility achieved (most spores are destroyed, but a few spores of non-pathogenic microorganisms which can't spoil the product, such as *Bacillus Subtilis*, at the common storage temperature may survive); F=4-6.
- Canned foods for tropic countries (F=12-15), can be stored at 40°C for a year.
- Absolutely sterilized canned foods (no survived spores allowed anyway). Used for a baby food and for strategic reserves.

Classification: Raw Material Source

Canned fruit and vegetables
Canned meat
Canned dairy products
Canned fish products
Canned marine products

Canned fish

- Natural
- Natural with oil addition
- In sauces or filling (with or without PHT)
- In oil (with or without PHT)
- With vegetable addition
- Pastes
- Canned fish liver, milt, caviar
- Vegetable with fish addition

Classification: by purpose

O Common Ø Baby food **O** Youth Ø For elderly O For special purposes O Delicacy O Dietary and therapeutic Animal food

Canned fish: common technology

Storage
Defrostation
Washing
Gutting+Washing
[Salting]
Portioning

Preliminary Heat Treatment (if present)

Purposes:

Increases relative food value

O Regulates water content

O Destroys microflora partially

Ways

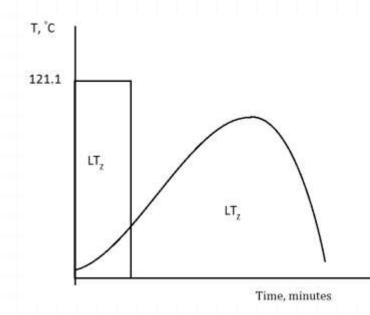
Ø Blanching (with steam, hot water, oil, MW, IR)

Frying

Orying, smoking

Special operations

Preparing the cans (washing) and the caps (marking)
Filling the cans
Exhaustion
Sealing the cans
Washing the cans
Inspecting
Filling the sterilizer (autoclave), cart or baskets


Thermal sterilization

- Main task to destroy the spores of microorganisms
- O Different temperatures of sterilization with the same action on the microorganism
- Ø 8 hours at 100 °C ≈ 3,5 minutes at 120 °C to destroy Clostridium botulinum spores
- Extra sterilization decreases the quality (overcooked, vitamins and amino acid destroyed, poorly digested), increases the energy needed
- Low sterilization can result in spore survival, diseases and possible death of the consumers
- In no case canned food may contain alive spores of the pathogenic microorganisms: Cl. botulinum, Cl. perfringens, Bac. cereus. Paenibacillus polymyxa is also disallowed.

Thermal sterilization: theory (after Bigelow)

Sterilization effect (practical lethality) – the time of the theoretical process at the base temperature (121.1 °C = 250 °F) which is equivalent of the real process in the nonstationary thermal field.

[relative minutes]

Recalculating the temperature

While the temperature is constant, it is easy to recalculate time at real temperature to the base temperature:

$$LT_Z = \frac{U}{10^{\frac{T_B - T_C}{z}}}$$

o where $LT_{\rm Z}$ – practical lethality of the process (rel.min)

OU – time of the real process at T_C .

 OT_C - current temperature

 OT_B – base temperature

Oz - thermal stability constant (how degrees to increase the temperature to decrease duration of the process 10 times).

Recalculating the temperature (practical)

In nonstationary thermal field:

$$LT_Z = \int_0^{\tau_P} \frac{d\tau}{10^{\frac{T_B - T(\tau)}{z}}}$$

• Numeric integration is needed to evaluate it

$$K_{Ti} = \frac{1}{10^{\frac{T_B - T_{Ci}}{z}}}$$
$$LT_Z = \int_0^{\tau_P} \frac{d\tau}{10^{\frac{T_B - T(\tau)}{z}}} \approx \sum_{i=1}^n K_{Ti} \cdot \tau_i$$

Determining LT_Z (practice)

Obtaining temperature in the less-heated point of the less-heated can.

Two ways:

- wired online (sensor is placed in the can, wire is passed through **specially modified sterilizer** to the data processing system)
- Vireless offline (for example, Ellab A/S, Denmark) sensor is connected with simple data collecting system working at the sterilization temperature.

Normative sterilization effect

 $F_N = D_T \cdot (\lg B + a)$

o where B – initial quantity of spores

- *a* order of spores destruction (the probability of spore survived in a single can is 10^{-a})
- O_T thermal stability constant (duration of decreasing microorganism quantity 10 times) at temperature T.

• $LT_Z = F_N$ is enough to give the warranty of practical sterility.

Determining normative sterilization effect

Inoculating cans with the test sporogenic microorganism (*Cl. sporogenes, Bac. subtilis, Cl. botulinum*).

Sterilizing at 121.1 °C; microbial test.

Sterilizing at different temperatures, microbial tests Calculating D

Ways of improving the sterilization process

Decreasing LT_Z (not less than F_N)
Thorough temperature control
Thorough microbiological control of raw materials and all semi-products to prevent microbial invasion.

This results in better sensory characteristics, better biological value, less energy consumption (water, steam, electricity)

Ways of thermal sterilization

- •With steam with air backpressure with waterchilling
- In water with steam heating with water backpressure with water-chilling
- With steam without backpressure

Sterilization formula

 $\frac{a-A-B-C}{T}; P$ O a – blowing up time (for steam sterilization only)

- A heating time (from somewhat less 100 °C up to T)
- OB sterilization time (at T)
- C chilling time
- o *T* temperature of sterilization
- *P* backpressure (bar or MPa)

Final processes

Cans washing, drying (wiping)
[Cans labeling]
Packaging, labelling
Maturing/storage
Inspecting

Ways of improving energy efficiency

- ${\it o}$ Microbiological researches to get the correct $F_{\rm N}.$
- o Decreasing LT_z as close to F_N as possible.
- Avoiding energy losses in sterilizer.
- If using PHT, partial destroying of microorganisms should be taken into account.
- Using modern automatic systems to avoid overheating, overregulation etc.
- Using effective equipment adequate to the throughput of the canning line.